

Faculty of Health and Applied Sciences

Department of Mathematics and Statistics

QUALIFICATION: Bachelor of Science; Applie	ed Mathematics and Statistics	
QUALIFICATION CODE: 07BAMS	LEVEL: 5	
COURSE: FINANCIAL MATHEMATICS 1	COURSE CODE: FIM502S	
DATE: January 2019	SESSION: Theory	
DURATION: 3 Hours	MARKS: 100	

SECOND OPPORTUNITY EXAM QUESTION PAPER		
EXAMINER(S)	Dr Victor Katoma; Mrs Susan Mwewa	
MODERATOR:	Dr Samuel Eegunjobi	

THIS QUESTION PAPER CONSISTS OF 2 PAGES

(Excluding this front page)

INSTRUCTIONS

- 1. Answer ALL the questions.
- 2. Write clearly and neatly.
- 3. Number the answers clearly.

PERMISSIBLE MATERIALS

1. Non-programmable pocket calculator without the cover

B.

QUESTION 1 (25 MARKS)

1.1 Show that
$$\ddot{a}_{\vec{n}} = \frac{1 - v^n}{d}$$
 (5)

- 1.2 A loan of N\$10, 000 is to be repaid over 10 years by a level annuity payable monthly in arrears. The amount of the monthly payment is calculated on the basis of an interest rate of 1% per month effective. Find the
 - 1.2.1 Monthly repayment. (4)
 - 1.2.2 Total capital repaid and interest paid in the 1st and last year respectively. (6)
 - 1.2.3 After which monthly repayment the outstanding loan is first less than N\$5,000.(5)
 - 1.2.4 For which monthly repayment the capital repaid first exceeds the interest. (5)

QUESTION 2 (25 MARKS)

- 2.1 Define the nominal rates of interest (3)
- 2.2 Derive the compound interest formula from simple interest (7)
- 2.3 Deduce the continuous compounding formula from the compounding formula (10)
- 2.4 Show that $a_{\infty]} = \lim_{n \to \infty} a_n = 1/i$ (5)

QUESTION 3 (25 MARKS)

3.1 Given that $\delta = 0.1$ find the values of

$$i^{(4)}, i^{(12)}, i^{(365)}, d^{(4)}, d^{(12)}, d^{(365)}$$
 (12)

- On 10 Jan in each of the years 1964 to 1979 inclusive, an investor deposited £5000 in a special bank savings account. On 10 Jan 1983, the investor withdrew his savings.
 Given that over the entire period the bank used an annual interest rate of 7% for its special savings accounts, find the sum withdrawn by the investor. (10)
- 3.4 Why do banks impose interest (3)

QUESTION 4 (25 MARKS)

- 4.1 Given that d = 6%, compute the value of $i^{(12)}$ (9)
- 4.2 Prove that $S_{n]} = \frac{(1+i)^{n}-1}{i}$ (7)
- 4.3 Define the following
 - 4.3.1 Loan schedule (4)
 - 4.3.2 Effective interest rates (5)

-- END OF EXAMINATION—

